Gujarati
Hindi
10-2. Parabola, Ellipse, Hyperbola
normal

The locus of a point $P\left( {\alpha ,\beta } \right)$ moving under the condition that the line $y = \alpha x + \beta $ is a tangent to the hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ is

A

a hyperbola

B

a parabola

C

a circle

D

an ellipse

Solution

The line $y=m x+c$ is a tangent to the hyperbola

$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$

if    $c^{2}=a^{2} m^{2}-b^{2}$

The line $y=\alpha x+\beta$ is a tangent to

$\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$

So, $\beta^{2}=a^{2} \alpha^{2}-b^{2}$

$\therefore $ Locus of $(\alpha, \beta)$ is

$y^{2}=a^{2} x^{2}-b^{2}$

$\Rightarrow a^{2} x^{2}-y^{2}=b^{2}$

or $\frac{x^{2}}{\left(\frac{b}{a}\right)^{2}}-\frac{y^{2}}{b^{2}}=1,$ which is hyperbola.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.